
Homework assignment 2
T-106.420 Concurrent Programming

Family name: Chaparro González

First name: Diego

Student number: 59881P

dchaparro@acm.org

1st November 2002

1



Contents

1 Exercise 3

1.1 a) Explain how. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 b) Develop a working busy-waiting solution based on this program 4

2 Exercise 5

2.1 a) This solution does not work. Give an execution order that
results in both processes being in their critical sections at the
same time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 b) Suppose that the first line in the flip instruction is changed to
do addition modulo 3 rather than modulo 2. Will the solution
now work for two processes, and if so, is the solution fair? Explain. 5

2



1 Exercise

Consider the following fine-grained synchronization program of two

processes

int turn1 = 0, turn2 = 0;

P1::

while (true) {

turn1 = turn2 + 1;

while (turn2 != 0 && turn1 > turn2)

skip;

critSection(1); turn1 = 0; nonCritSection(1);

}

P2::

while(true) {

turn2 = turn1 + 1;

while (turn1 != 0 && turn2 > turn1)

skip;

critSection(2); turn2 = 0; nonCritSection(2);

}

The processes can reach their critical sections at the same time.

1.1 a) Explain how.

It can happen because the instructions:

turn1 = turn2 + 1;

and

turn2 = turn1 + 1;

aren’t atomic, and these are the source of the problem.
For example, the first process starts to run and it’s executing the instruction

turn1 = turn2 + 1. First load a register with turn2 (which value is 0), but
before it adds 1 to the register, the second process starts to run. This second
process starts to execute the instruction turn2 = turn1 + 1, read the value of x
and it’s 0 yet, because the process 1 hasn’t written it yet.

Then the two process follow their execution and finish the execution of these
two instructions (turn1=turn2+1 and turn2=turn1+1 ) with the values

• turn1 == 1

• turn2 == 1

With these values both processes can reach their critical sections because
the expresion (turn1 > turn2) and (turn2 > turn1) are false respectively.

3



1.2 b) Develop a working busy-waiting solution based on
this program

This can be one working solution:

int turn1 = 0, turn2 = 0;

P1::

while (true) {

<turn1 = turn2 + 1;>

<await (turn2 == 0 or turn1 <= turn2)>

critSection(1); turn1 = 0; nonCritSection(1);

}

P2::

while (true) {

<turn2 = turn1 + 1;>

<await (turn1 == 0 or turn2 <= turn1)>

critSection(2); turn2 = 0; nonCritSection(2);

}

4



2 Exercise

Suppose your machine has to following atomic instruction:

flip(lock): <lock = (lock + 1) % 2; # flip the lock

return (lock);>

Someone suggests the following solution to the critical section

problem for two processes:

int lock = 0;

process CS[i = 1 to 2]{

while (true) {

while (flip(lock) != 1)

while (lock != 0) skip;

critSection();

lock = 0;

nonCritSection();

}

}

2.1 a) This solution does not work. Give an execution or-
der that results in both processes being in their criti-
cal sections at the same time

Lock is 0.
Process 1 starts to execute, and enter in the critical section. The lock is 1.
Then the process 2 start to execute, the flip(lock) returns 0, which is differ-

ent from 1 and enters in the inner while loop. Now lock is 0. The condition of
the inner loop (while (lock != 0) is false, so it returns to the outer loop. Now
the flip(lock) returns 1, so the while condition (flip(lock) != 1) is false, and the
second process enters into the critical section while process 1 is still there.

2.2 b) Suppose that the first line in the flip instruction is
changed to do addition modulo 3 rather than modulo
2. Will the solution now work for two processes, and
if so, is the solution fair? Explain.

Yes, with this change it works because in the above case, when the second
process enters in the inner loop (while (lock!=0))the value of lock is 2, and this
process enters in this loop until the process 1 change the value of lock to 0 when
it exits from the critical section.

In this solution we have an example of Test-and-Set instructions, so the
property of ”eventual entry” is not guaranteed, because the lock will become
false infinitely often for process 2, and for this reason this maybe it’s not a fair
solution, but it works.

5


