Homework assignment 1

T-106.420 Concurrent Programming

Family name: Chaparro Gonzalez
First name: Diego
Student number: 59881P
dchaparro@acm.org

14th October 2002

Contents

1 Exercise

1.1 a) 815895 535 - v v o e
12 b)co<S;> || <S> <Sg;>0c oo
1.3 ¢) co < await(x > y)S1;S2)|| < Sz;>o0c

2 Exercise

3 Exercise

1 Exercise

Consider the following three statements:

Si:x=x+uy;
Syiy=1x—y;
Sy:rx=x—1y;

Assume that x is initially 2 and that y is initially 5. For each of
the following, what are the possible final values of x and y? Explain
your answers.

1.1 a) Sy; So; Ss;

The final values of x and y are:
e xr=>5
o y=2

Because in this case the execution of the three statements is executed in a
sequential order. After the execution of the first statement the values are:

e xr=7andy=>5

After the execution of the second statement the values are:

e x=7andy=2

And then after the execution of the third statement the values are:

erz=5andy=2

1.2 Db) co < Si;> || <S> || < S3;> oc

In this case, the final values depends on the order execution of the three state-
ments. As the three statements are concurrent, the possible order execution
and the final results of the variables can be:
e 51;52;53;
r=>5andy=2
e 51;53;52;
r=2and y=—3
e 52;51;53;
r=2and y=—3
e 52;53;51;
r=2and y=—3
e 53;51;52;
r=2and y=—3
e 53;52;51;
r=—11and y = —8

1.3 c¢) co < await(x > y)S1;S2)|| < S3;> oc

In this case the program doesn’t finish never, because the process that execute
the first arm doesn’t finish never. The reason is that the condition of the await
instruction never will be true, because x always will be minor than y.

At first x is 2 and y is 5. The first process has to wait until x is greater than
y, then at first the process has to wait. The second process can execute in any
moment, and after his execution the value of x will be -3 and the value of y will
be 5.

And the first process will continue waiting forever, because before and after
the execution of the second process the conditional expression always will be
false.

2 Exercise

Consider the following program:
intx =0,y = 0;
cor=z+lLiz=x+2;|lt=x+2;y=y—x; oc

2.1 a)

Suppose each assignment statement is implemented by a single ma-
chine instruction and hence is atomic. How many possible histories
are there? What are the possible final values of x and y?

The number of possible histories is the result of (n * m)!/(m!™), where n is
the number of process and that each executes a sequence of m atomic actions.

In this case the first process execute two assignment statement:

r=x+ l;x=x+2;

It means 2 atomic actions. The second process execute two assignment
statements:

r=x+2,y =y — x;

It means another two atomic actions.

Here are two processes, and each process executes two atomic actions. The
number of possible histories is 6.

(2%2)!/(21%) =6

In order to show the possible values I'm going to label the statements:

co
Si:rx=x+1;
Sy:rx=x+2
Ss:x=x+2;
Siiy=y—uz;
oc

The possible values of the variables depends on the instruction order execu-
tion:

® 51;82;53;54;
r=>5and y= -5
o 51;53;52; S4;
r=>5and y= -5
o S1;53; 545 52;

r=>5and y=—3
o 53;54;51;59;
r=>5and y= -2
o 53;51;54;5;
r=>5and y=—3
o S3;.51;52; S
r=>5and y= -5

2.2 D)

Suppose each assignment statement is implemented by three atomic
actions: the load register, add or substract a value from that register,
then store the result. How many possible histories are there now?
What are the possible final values of x and y?

Each process executes 2 assignments, which means that each process executes
6 atomic actions. I suppose that the instruction: y = y—x only take three atomic
actions as well, because the load register action loads the two registers at the
same time (x and y). And the number of processes is two, then the number of
histories is 924:

(2%6)!/(6!%) =924

The possible values of x can be: 2, 3, 4, 5. And the possible values of y can
be: -2, -3, -4, -5

3 Exercise

Consider the following program:
varx,y : int
Sicorx=x—-lLiz=z+llly=y+Ly=y—1oc

Show that { x ==y }S{z ==y} is a theorem.

First, as x is equal to y, I suppose that both are equal to z, and z can be
anything:

If x==y then x==z and y==z.

It’s a proof outline in which is shown that the the expression above is a
theorem:

{x==2z"y==2z"x ==y}

co {x == z}
<x = x - 1;>
{x ==z - 1}
<x = x + 1;>
{x == z}

[l {y == 2z}
<y =y + 1;>
{y ==z + 1}
<y =y - 1;>
{y == z}

oc

{x ==z "~y ==z ~ x==y}

